Our lab is primarily focused on unraveling the mechanisms of receptor transmembrane signaling. Specifically, our attention is directed towards cell surface receptors featuring single transmembrane domains, such as integrins, receptor tyrosine kinases, and receptor-like tyrosine phosphatases. Through a multidisciplinary approach encompassing structural biology, protein engineering, biochemistry, and cell biology techniques, we aim to elucidate how these receptors transmit signals across the cell membrane. Our investigations center on understanding the conformational regulation triggered by ligand binding at the extracellular domain or cytoplasmic domain stimulations. Our goal is to illustrate the intricate mechanisms governing receptor-ligand interactions and the conformational changes necessary for transmembrane signaling, spanning the extracellular, transmembrane, and cytoplasmic domains.
We are currently engaged in several projects, delving into the conformational requirements for bi-directional transmembrane signaling in integrins, elucidating the structural and functional basis of integrins as pathogen receptors, exploring integrin ligand interactions, and developing antibodies and small molecules that target or stabilize specific integrin conformations. Integrins, crucial cell surface receptors, play a pivotal role in regulating cell-cell and cell-matrix interactions across various biological processes, including development, hemostasis, antigen recognition, homing, and inflammation. Dysregulation of integrin activation is observed in pathological conditions such as autoimmune diseases and thrombosis. Our overarching goal is to uncover the intricate correlation between receptor conformational regulation and signal transduction, aiming to contribute to the design of more efficient and safer therapeutic agents.
A new focus of our lab entails unraveling the mechanism behind coronavirus spike protein-mediated cell fusion and viral infection. We aim to apply the gained knowledge to develop inhibitors for antiviral treatment and diverse virus-based applications, including cell-specific gene delivery and oncolysis.